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Abstract 

Deep learning has transformed a wide range of industries, including computer vision, natural 

language processing, and speech recognition. The training of deep neural networks, which often 

entails using backpropagation to update the network's trainable parameters, is one of the main issues 

in deep learning. Although backpropagation has been quite effective in achieving cutting-edge 

performance in various activities, it has several significant drawbacks. 

One major limitation of backpropagation is that it requires computing gradients at each layer, which 

can be computationally expensive and time-consuming, especially for large networks. Moreover, the 

gradients computed at each layer may suffer from the vanishing gradient problem, which can lead to 

slow convergence and suboptimal solutions. 

To overcome these limitations, we propose a novel deep-learning methodology that instantly updates 

the trainable parameters at each hidden layer. Our approach eliminates the need for computing 

gradients at each layer, thereby significantly reducing computational overhead. Moreover, it allows 

the network to learn more rapidly and avoid the vanishing gradient problem. In this paper, we present 

a detailed description of our proposed methodology, including the neural network architecture and the 

instant parameter update approach. We provide experimental results on a benchmark dataset that 

demonstrate the effectiveness of our approach and compare it with state-of-the-art methods. We also 
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discuss the implications of our results and highlight the potential impact of our proposed 

methodology. Finally, we conclude by summarizing the key contributions of our paper and 

identifying future research directions. 

1 Introduction 

Deep learning has revolutionized the field of artificial intelligence by enabling machines to learn 

complex patterns and perform tasks that were previously deemed impossible. However, training deep 

neural networks is a challenging and computationally expensive task that requires optimizing millions 

or even billions of parameters. The backpropagation algorithm has been the go-to method for training 

deep neural networks for decades, but it suffers from some limitations, such as slow convergence and 

the vanishing gradient problem. 

To overcome these limitations, several alternative training methods have been proposed, such as 

Standard Backpropagation and Direct Feedback Alignment. The core idea of this approach is to 

update the weights and biases in each layer of a neural network using the local error at that layer, 

rather than backpropagating the error from the output layer to the input layer. By doing so, the 

training process can be accelerated and the model's accuracy can be improved. 

In this paper, we propose a novel approach for layer-wise error calculation and parameter update in 

neural networks and evaluate its performance on a benchmark dataset. We compare our approach to 

other existing methods, such as backpropagation, and demonstrate its effectiveness in terms of 

convergence speed and accuracy. 

The rest of the paper is organized as follows. In Section 2, we provide a brief review of the related 

work on layer-wise error calculation and parameter update in neural networks. In Section 3, we 

present our proposed approach and its mathematical formulation. In Section 4, we describe the 

experimental setup and present the results of our evaluation. Finally, in Section 5, we conclude the 

paper and discuss potential avenues for future research. 

2 Literature review 

Backpropagation and Direct Feedback Alignment (DFA) are two widely used methods for training 

artificial neural networks. Both methods aim to adjust the weights of the network to minimize the 

difference between the predicted output and the actual output. In this literature review, we will 

compare and contrast these two methods, highlighting their strengths and weaknesses. 

Backpropagation is a commonly used algorithm for training neural networks. The basic idea behind 

backpropagation is to calculate the error at the output layer and propagate it backward through the 

network, adjusting the weights of each neuron in the network to minimize the error. The 

backpropagation algorithm is computationally efficient and can be used to train deep neural networks 

with many layers. However, backpropagation has several limitations. One of the main limitations is 

that it requires the computation of the derivative of the activation function at each layer, which can be 

computationally expensive. Additionally, backpropagation is prone to getting stuck in local minima, 

which can lead to suboptimal solutions. 

Direct Feedback Alignment (DFA) is a newer method for training neural networks that does not rely 

on backpropagation. Instead of using the gradient of the loss function to update the weights, DFA 
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uses a fixed random matrix to propagate the error from the output layer back to the hidden layers. 

This random matrix is learned during the training process and is used to update the weights of the 

hidden layers. DFA has several advantages over backpropagation. One of the main advantages is that 

it is less computationally expensive, as it does not require the computation of the derivative of the 

activation function at each layer. Additionally, DFA is less prone to getting stuck in local minima 

than backpropagation. Several studies have compared the performance of backpropagation and DFA 

on various tasks. A study by Nøkland et al. (2016) found that DFA performed as well as 

backpropagation on several benchmark datasets, including MNIST and CIFAR-10.  

3 Proposed Approach 

The approach involves four main steps: forward pass, error calculation, parameter update, and 

repetition. The forward pass computes the activations of each layer using the current weights and 

biases. The error calculation step computes the error at each layer using a layer-wise loss function 

that takes into account the local deviation between the predicted and target values of that layer. The 

parameter update step updates the weights and biases of each layer using the calculated error and a 

layer-wise learning rate that controls the magnitude of the update. Finally, the repetition step repeats 

the first three steps for multiple epochs or until convergence. 

  

Figure 1: Neural Network Lifecycle 

The proposed approach differs from the traditional backpropagation algorithm, which calculates the 

error at the output layer and backpropagates it to update the parameters of all the layers. The layer-

wise approach allows for more localized and efficient updates that can potentially accelerate the 

training process and avoid the vanishing and exploding gradient problem. However, it requires 

careful tuning of the layer-wise loss function and learning rate, as well as a suitable initialization of 

the parameters. 

3.1   Forward pass 

Compute the activations of each layer using the current weights and biases, starting from the 

input layer and propagating forward to the output layer. 
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Figure 2: Forward Propagation 

Inputs: 

● Input data 𝑥 

● Parameters for each layer: weights (W) and biases (b) 

Output: 

● Activations for each layer: ℎ𝐼 
Algorithm: 

1 Initialize the input activation as the input data: ℎ0 = 𝑥 

2 For each layer I in the neural network:  

a. Calculate the pre-activation value: 𝑧𝐼 = 𝑊 𝐼 − 1} +𝑏𝐼  
b. Calculate the activation value using an activation function: ℎ𝐼 = 𝑓(𝑧𝐼), where 𝑓 is a non 

linear function such as 𝑅𝑒𝐿𝑈, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, or 𝑡𝑎𝑛ℎ. 

3 Output the activations for each layer: ℎ𝐼 
The pre-activation value 𝑧𝑙 is the weighted sum of the activations from the previous layer ℎ𝐼{𝑙 − 1}, 
plus the bias term b_I. The activation function 𝑓 transforms the pre-activation value 𝑧𝑙 into the 

activation value ℎ𝐼, which is then passed on to the next layer. The choice of activation function 

depends on the specific task and architecture of the neural network, but common choices include 𝑅𝑒𝐿𝑈, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, and 𝑡𝑎𝑛ℎ. 

The formulas for calculating the pre-activation value and activation value are 

● Pre-activation value: 𝑧𝐼 = 𝐻𝐼{𝑙 − 1} + 𝑏𝐼 
● Activation value: ℎ𝐼 = 𝑓(𝑧𝐼) 

where 𝑊𝐼 is the weight matrix for layer I, 𝑏𝐼 is the bias vector for layer I, ℎ𝐼{𝐼 − 1} is the activation 

vector from the previous layer, and 𝑓 is the activation function. 
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3.2  Error Calculation 

Compute the error at each layer using a layer-wise loss function that takes into account the local 

deviation between the predicted and target values of that layer. The layer-wise loss function can be 

defined based on the specific task and architecture of the neural network, but it should capture the 

local errors that are relevant for updating the parameters of that layer. 

Input: 

● Activations of each layer 

● Targets of each layer 

● Layer-wise loss function 

Output: 

● Error of each layer 

Algorithm: 

1 Initialize an empty list to store the error of each layer. 

2 For each layer 𝐿 in the neural network, do the following:  

a. Compute the predicted values of the layer 𝐿 using its activations and the current weights 

and biases: 𝑍𝐿 = 𝑊𝐿 ∗ 𝐴𝐿 − 1 + 𝑏𝐿 = 𝑤ℎ𝑒𝑟𝑒𝐴𝐿 is activation_function   

b. Compute the target values of a layer 𝐿: 𝑇𝐿 = 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 of layer 𝐿 

c. Compute the layer-wise loss function for layer  : loss_L = 

layerwise_loss_function(𝐴𝐿 , 𝑇𝐿)d.  

d. Compute the error of layer 𝐿 :  𝑑𝑒𝑙𝑡𝑎𝐿 = 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒  (i.e.) 𝑍𝐿 ∗ (1 − 𝑍𝐿).  𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 (𝑙𝑜𝑠𝑠𝐿)𝑒𝑟𝑟𝑜𝑟𝐿 = 𝑑𝑒𝑙𝑡𝑎𝐿 ∗ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝑊𝐿 + 1) 

e. Add 𝑒𝑟𝑟𝑜𝑟𝐿 to the list of errors. 

3 Return the list of errors. 

In the above algorithm, 𝑊𝐿 and 𝑏𝐿 represent the weights and biases of layer 𝐿, 𝐴𝐿 − 1 and 𝐴𝐿 represent 

the activations of the previous layer and the current layer, respectively, 𝑍−𝐿 is the weighted input to 

layer 𝐿, 𝑇𝐿 is the target values for layer 𝐿, and 𝑑𝑒𝑙𝑡𝑎𝐿 is the error signal for layer 𝐿. The activation 

function and its derivative are denoted as 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 , respectively, and the 

layer-wise loss function and its derivative are denoted as 𝑙𝑎𝑦𝑒𝑟𝑤𝑖𝑠𝑒  and 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 , respectively. 

The transpose(𝑊𝐿 + 1) term in step 2 𝑑 represents the transpose of the weights connecting layer 𝐿 + 1 

to layer 𝐿. 



A Novel Method for Improving Accuracy in Neural Network by Reinstating Traditional Back Propagation Technique…. Gokulprasath R 

 

21 | Singaporean Journal of Scientific Research, (SJSR) Vol.15.No.1 2023 Pp.15-33, www.sjsronline.com  ISSN: 1205-2421 

 

 

Figure 3: Confusion Matrix 

 

3.2.1 Accuracy 

Accuracy is a commonly used metric for evaluating the performance of a classification model, 

including neural networks. It measures the proportion of correctly classified instances over the total 

number of instances in the dataset. The formula for accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠)(𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠)  

 

In a binary classification problem, where there are two classes, the accuracy can be calculated as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) 

where True Positives (TP) is the number of instances that belong to the positive class and are 

correctly classified, False Positives (FP) is the number of instances that belong to the negative class 

but are incorrectly classified as positive, True Negatives (TN) is the number of instances that belong 

to the negative class and are correctly classified, and False Negatives (FN) is the number of instances 

that belong to the positive class but are incorrectly classified as negative. 

In a multi-class classification problem, where there are more than two classes, the accuracy can be 

calculated as the average of the accuracy for each class: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1𝑛) ∗ 𝛴(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖) 

where n is the number of classes, and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 is the accuracy for the i-th class. 

3.2.2 Precision 
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Precision is a metric that measures the proportion of correctly predicted positive instances over the 

total number of instances that were predicted as positive. It is a useful metric when the goal is to 

minimize false positives, i.e., instances that are predicted as positive but actually belong to the 

negative class. 

The formula for precision is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) 

where True Positives (TP) is the number of instances that belong to the positive class and are 

correctly classified, and False Positives (FP) is the number of instances that belong to the negative 

class but are incorrectly classified as positive. 

In a binary classification problem, high precision means that the model is making fewer false positive 

predictions, and is useful in applications such as medical diagnosis or fraud detection where false 

positives can have severe consequences. 

In a multi-class classification problem, precision can be calculated for each class as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖) 

where 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 is the number of instances that belong to the i-th class and are correctly 

classified, and 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 is the number of instances that belong to the i-th class but are 

incorrectly classified as another class. 

3.2.3 Recall 

Recall, also known as sensitivity or true positive rate, is a metric that measures the proportion of 

correctly predicted positive instances over the total number of positive instances in the dataset. It is a 

useful metric when the goal is to minimize false negatives, i.e., instances that are predicted as 

negative but actually belong to the positive class. 

The formula for recall is: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) 

where True Positives (TP) is the number of instances that belong to the positive class and are 

correctly classified, and False Negatives (FN) is the number of instances that belong to the positive 

class but are incorrectly classified as negative. 

In a binary classification problem, high recall means that the model is making fewer false negative 

predictions and is useful in applications such as disease diagnosis or spam detection where false 

negatives can be costly. 

In a multi-class classification problem, recall can be calculated for each class as follows: 
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𝑅𝑒𝑐𝑎𝑙𝑙𝑖 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖) 

where 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 is the number of instances that belong to the i-th class and are correctly 

classified, and 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖 is the number of instances that belong to the i-th class but are 

incorrectly classified as another class. 

3.2.4 F1-Score 

F1-score is a harmonic mean of precision and recall, which combines both metrics into a single 

measure of a model's performance. It is a useful metric when we want to balance the trade-off 

between precision and recall. 

 

The formula for F1-score is: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)  

where Precision and Recall are defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) 

In a binary classification problem, the F1-score can range from 01, where a score of 1 indicates 

perfect precision and recall, while a score of 0 indicates the worst possible performance. 

In a multi-class classification problem, the F1-score can be calculated for each class as follows: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝑖 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖)  

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 and 𝑅𝑒𝑐𝑎𝑙𝑙𝑖 are the precision and recall for the i-th class, respectively. 

3.3 Parameter update 

Update the weights and biases of each layer using the calculated error and a layer-wise learning rate 

that controls the magnitude of the update. The update rule can be based on gradient descent or another 

optimization algorithm that can handle non-convex and high-dimensional spaces. 

 

Algorithm 

1 Initialize the weights and biases of each layer randomly or using a pre-defined scheme. 

2 Set the learning rate, 𝛼which controls the step size of the parameter update. 
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3 For each layer 𝐼, compute the gradients of the layerwise loss function with respect to the 

weights and biases, denoted by 𝜕 𝐿𝜕 𝑤(𝐼) and 𝜕 𝐿𝜕 𝑏(𝐼), respectively, using the error calculated in 

the previous stage. 

4 Update the weights and biases of each layer using the gradients and the learning rate as 

follows: 

a. Weight Update: 𝑤(𝐼) = 𝑤(𝐼) − 𝛼 ∗ 𝜕 𝐿𝜕 𝑤(𝐼) 

b. Bias Update: 𝑏(𝐼) = 𝑏(𝐼) − 𝛼 ∗ 𝜕 𝐿𝜕 𝑏(𝐼) 

c. where 𝑤(𝐼) and 𝑏(𝐼) are the weights and biases of layer 𝐼, respectively. 

5 Repeat steps 3-4 for all layers in the neural network. 

6 Repeat steps 1-5 for multiple epochs or until convergence, where the convergence criterion 

can be based on a validation set or other metrics that capture the generalization ability of the 

model. 

7 The weight and bias updates are computed using the gradients of the layer-wise loss function 

with respect to the weights and biases, respectively. These gradients can be computed using 

the error calculated in the previous stage and the chain rule of calculus. For example, the 

weight update for a fully connected layer can be computed as 𝑤(𝐼) = 𝑤(𝐼) − 𝛼 ∗ 𝜕 𝐿𝜕 𝑤(𝐼) 

8 where 𝑤(𝐼) is the weight matrix of layer 𝐼, 𝛼 is the learning rate, and 𝜕 𝐿𝜕 𝑤(𝐼) is the gradient of 

the layerwise loss function with respect to 𝑤(𝐼), which can be computed as 

9 𝜕 𝐿𝜕 𝑤(𝐼) = 𝜕 𝐿𝜕 𝑎(𝐼) ∗ 𝜕𝑎 (𝐼)𝜕 𝑤(𝐼) 

10 where 𝜕 𝐿𝜕 𝑎(𝑙) is the gradient of the layerwise loss function with respect to the activation of 

layer 𝐼, and 𝜕𝑎 (𝐼)𝜕 𝑤(𝐼) is the gradient of the activation of layer 𝐼 with respect to the weights of 

the layer 𝐼. The bias update can be computed similarly using the gradient of the layer wise loss 

function with respect to the biases. 

3.4   Repeat 

Repeat steps 1-3 for multiple epochs or until convergence, where the convergence criterion can be 

based on a validation set or other metrics that capture the generalization ability of the model. 

The repeat stage of the proposed methodology involves iterating through the forward pass, error 

calculation, and parameter update steps for multiple epochs or until convergence. The structured 

algorithm for the repeat stage is as follows: 

Repeat until convergence or a maximum number of epochs: 

1 Perform a forward pass through the network to compute the activations of each layer using the 

current weights and biases. 

2 Compute the error at each layer using the layer-wise loss function based on the local deviation 

between the predicted and target values of that layer. 



A Novel Method for Improving Accuracy in Neural Network by Reinstating Traditional Back Propagation Technique…. Gokulprasath R 

 

25 | Singaporean Journal of Scientific Research, (SJSR) Vol.15.No.1 2023 Pp.15-33, www.sjsronline.com  ISSN: 1205-2421 

 

3 Update the weights and biases of each layer using the calculated error and the layer-wise 

learning rate according to the update rule. The update rule can be based on gradient descent or 

another optimization algorithm that can handle non-convex and high-dimensional spaces. 

4 Evaluate the performance of the model on a validation set or other metrics that capture the 

generalization ability of the model. 

5 If the performance has improved, save the current set of weights and biases as the best model 

so far. 6. If the convergence criterion is met (e.g., the validation error has stopped decreasing), 

terminate the training and return the best model. Otherwise, continue to the next epoch. 

The formulas for the parameter update stage can be based on various optimization algorithms, such as 

stochastic gradient descent (SGD) or Adam. For example, the SGD update rule for the weights and 

biases of a single layer can be expressed as: 𝑊{𝑡 + 1} = 𝑊𝑡 − 𝑒𝑡𝑎 ∗ 𝑑𝑊𝑡 𝑏{𝑡 + 1} = 𝑏𝑡 − 𝑒𝑡𝑎 ∗ 𝑑𝑏𝑡 

 

where 𝑊𝑡 and 𝑏𝑡 are the current weights and biases, 𝑑𝑊𝑡 and 𝑑𝑏𝑡 are the gradients of the layerwise 

loss function with respect to the weights and biases, and eta is the layer-wise learning rate that 

controls the magnitude of the update. The update rule can also include momentum or regularization 

terms to improve the stability and generalization of the model. 

4   Experiment 

To evaluate the effectiveness of the proposed methodology, we conducted experiments on two 

benchmark datasets: MNIST and CIFAR-10. For each dataset, we compared our approach with two 

baseline methods: standard backpropagation and direct feedback alignment 

We implemented the proposed approach and baseline methods using Python and TensorFlow. 

4.1   Dataset preparation 

The MNIST and CIFAR-10 datasets are widely used benchmark datasets in the field of computer 

vision. These datasets contain images of handwritten digits (in the case of MNIST) and objects (in the 

case of CIFAR-10), and are used to train and evaluate machine learning models for image 

classification tasks. 

Once you have downloaded the datasets, the next step is to split them into training and test sets. This 

is done to evaluate the performance of the model on unseen data. Typically, a split of 80% training 

and 20% test is used. This means that 80% of the data is used for training the model, and 20% is used 

for evaluating its performance. 

After splitting the data, the next step is to normalize the pixel values to be between 0 and 1. 

Normalization is a technique used to rescale the values of input features to fall within a smaller and 

consistent range. In the case of image datasets, normalization is typically done to ensure that all pixel 

values are in the same range, which helps the machine learning model to learn more effectively. 
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The pixel values in the MNIST and CIFAR-10 datasets are typically in the range of 0 to 255, where 0 

represents the minimum intensity (black) and 255 represents the maximum intensity (white). To 

normalize the pixel values to be between 0 and 1, we divide each pixel value by the maximum pixel 

value in the dataset, which is 255. 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  = 
𝑝𝑖𝑥𝑒𝑙𝑣𝑎𝑙𝑢𝑒255  

The resulting normalized pixel values will fall within the range of 01. 

Normalization is an important step in image processing and computer vision tasks because it helps to 

make the data more consistent and easier to work with. Normalization can also help to prevent certain 

issues that can arise during training, such as vanishing gradients, where the gradients become very 

small and effectively stop the learning process. 

4.2   Model architecture 

Convolutional Neural Networks (CNNs) have been widely used in computer vision tasks, particularly 

in image classification tasks. In this context, CNNs work by using a series of layers to extract features 

from images, which are then used to make predictions about their class labels. In this research paper, 

we propose using a CNN architecture with the following layers: a convolution layer with 32 filters, a 

kernel size of 3x3 pixels, and 𝑅𝑒𝐿𝑈 activation, followed by a second convolution layer with 64 filters, 

a kernel size of 3X3 pixels, and 𝑅𝑒𝐿𝑈 activation. These two convolutional layers are followed by a 

max pooling layer with a pool size of 2x2 pixels. The output of the pooling layer is then flattened and 

fed into a dense layer with 512 units and 𝑅𝑒𝐿𝑈 activation. Finally, an output layer with 10 units and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation is used to produce a probability distribution over the possible class labels.The 

first convolutional layer applies 32 filters to the input image, which helps the network to learn low-

level features such as edges and corners. The second convolutional layer applies 64 filters to the 

output of the first layer, which enables the network to learn more complex and high-level features. 

The 𝑅𝑒𝐿𝑈 activation function is used in both convolutional layers to introduce non-linearity and 

improve the model's ability to learn complex features. 

After the convolutional layers, a max pooling layer is used to down sample the feature maps produced 

by the convolutional layers. This reduces the spatial dimension of the feature maps, which helps to 

reduce the number of parameters and makes the model more efficient. The flattened output of the 

max pooling layer is then fed into a dense layer with 512 units and 𝑅𝑒𝐿𝑈 activation, which helps the 

model to learn even more complex patterns in the feature maps. 

Finally, an output layer with 10 units and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation is used to produce a probability 

distribution over the possible class labels. The 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation function is used to ensure that the 
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probabilities add up to one, which makes it easier to interpret the outputs of the model.

 

Figure 4: Architecture of the CNN model 

4.3   Experiment setup 

In machine learning, hyperparameters are parameters that need to be set before training the model, 

and they control how the model learns. Hyperparameters can significantly impact the performance of 

the model, and selecting the appropriate hyperparameters is an essential part of the training process. 

The Adam optimizer is a popular optimization algorithm that has been shown to be effective in deep 

learning applications. It uses adaptive learning rates and momentum to speed up convergence during 

training. In this research, we use the Adam optimizer with a fixed learning rate of 0.001 for both 

models. A learning rate of 0.001 is a common choice for many deep learning applications and has 

been found to work well in practice. 

The batch size is a hyperparameter that determines the number of training examples used to compute 

the gradients of the loss function during each iteration of training. A batch size of 128 is a moderate 

choice that balances the tradeoff between faster convergence and efficient use of memory. Using 

larger batch sizes can lead to faster convergence, but it also requires more memory to store the 

gradients, while using smaller batch sizes can lead to slower convergence due to noisy gradient 

estimates. 

The number of epochs is a hyperparameter that determines the number of times the entire training 

dataset is presented to the model during training. In this research, we use 100 epochs for both models. 

The number of epochs can impact the final performance of the model, as training for too few epochs 

can result in underfitting, while training for too many epochs can result in overfitting. 

4.4   Comparison metrics 

In the field of machine learning, evaluation metrics are used to measure the performance of a trained 

model. One common evaluation metric for classification tasks is accuracy, which measures the 

percentage of correctly classified examples in the test set. However, accuracy alone may not provide 

a complete picture of the model's performance, especially when dealing with imbalanced datasets. 

In addition to accuracy, precision, recall, and F1 score are also commonly used metrics to evaluate a 

model's performance on a classification task. Precision measures the proportion of true positives 

(correctly classified positive examples) among all predicted positives, while recall measures the 
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proportion of true positives among all actual positives. The F1 score is the harmonic mean of 

precision and recall and provides a single score that balances both metrics. 

To evaluate the performance of the trained models in this research, we report their accuracy, 

precision, recall, and F1 score on the test set. These metrics provide a comprehensive picture of the 

model's performance and can help us determine whether the model is performing well on all classes 

or if it's biased towards one or more classes. 

We compute these metrics by comparing the predicted labels of the models to the true labels in the 

test set. For example, accuracy is computed as the number of correctly classified examples divided by 

the total number of examples in the test set. Precision, recall, and F1 score are computed using the 

true positives, false positives, and false negatives for each class. 

By reporting these metrics, we can compare the performance of the two trained models and determine 

which one performs better on the classification task. Additionally, we can identify areas where the 

models may be performing poorly and explore ways to improve their performance. 

4.5   Comparison models 

4.5.1   Standard Backpropagation 

The standard backpropagation algorithm is the most common training method used in deep learning 

to update the weights and biases of a neural network. It is an algorithm that computes the gradient of 

the loss function with respect to the weights and biases of the network, and then uses this gradient to 

update the weights and biases to minimize the loss. 

 

Figure 5: Backpropagation 

The standard backpropagation algorithm consists of two phases: forward propagation and backward 

propagation. In the forward propagation phase, the input data is fed into the network, and the 

activations and outputs of each layer are computed. In the backward propagation phase, the error 

between the predicted outputs and the true outputs is propagated backward through the network to 

compute the gradient of the loss function with respect to the weights and biases. 

Algorithm: 

1. Initialize the weights and biases of the network with random values. 
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2. Feed the input data into the network to compute the activations and outputs of each layer. 

3. Compute the error between the predicted outputs and the true outputs. 

4. Compute the gradient of the loss function with respect to the weights and biases of the 

network using the chain rule of calculus. 

5. Use the gradient to update the weights and biases of the network, typically using an 

optimization algorithm such as gradient descent or its variants. 

6. Repeat steps 2-5 for a certain number of epochs or until the desired accuracy is achieved. 

4.5.2   Direct Feedback Alignment 

Direct feedback alignment is an alternative method to backpropagation for training deep neural 

networks. It is based on the idea of using fixed random feedback weights to propagate the error 

signals from the output layer to the hidden layers, instead of using the exact gradients as in 

backpropagation. 

In the direct feedback alignment method, the feedback weights are randomly initialized and kept 

fixed throughout the training process. During each training iteration, the input data is fed into the 

network, and the activations and outputs of each layer are computed as in backpropagation. However, 

instead of computing the exact gradients using the chain rule of calculus, the error signals are 

propagated back from the output layer to the hidden layers using the fixed feedback weights. These 

error signals are then used to update the weights and biases of the network using an optimization 

algorithm such as gradient descent. 

 

 

Figure 6: Direct Feedback Alignment 

The direct feedback alignment algorithm can be summarized in the following steps: 

1. Initialize the weights and biases of the network with random values. 

2. Initialize the feedback weights with random values and keep them fixed throughout the 

training process. 

3. Feed the input data into the network to compute the activations and outputs of each layer. 

4. Compute the error between the predicted outputs and the true outputs. 

5. Propagate the error signals back from the output layer to the hidden layers using the fixed 

feedback weights. 
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6. Use the error signals to update the weights and biases of the network, typically using an 

optimization algorithm such as gradient descent or its variants. 

7. Repeat steps 3-6 for a certain number of epochs or until the desired accuracy is achieved. 

The key difference between backpropagation and direct feedback alignment is the use of fixed 

random feedback weights in the latter. These feedback weights are randomly initialized and kept 

fixed throughout the training process, unlike the weights in the forward and backward passes that are 

updated during training. 

In step 5 of the algorithm, the error signals are propagated from the output layer to the hidden layers 

using the fixed feedback weights. This can be done by multiplying the error signals at the output layer 

with the feedback weights and then passing the resulting signals through the activation functions of 

the hidden layers. 

4.6   Experiment procedure 

One critical aspect of this methodology is to train each model using the same dataset and 

hyperparameters and to evaluate the models on a test set using comparison metrics. 

By training each model on the same dataset, we ensure that all models have access to the same 

information and that any observed differences in performance are due to the underlying design 

choices of the models, rather than differences in the training process. Similarly, using the same 

hyperparameters ensures that each model is optimized using the same criteria and that we are 

comparing models with equivalent levels of complexity. 

Once the models are trained, they should be evaluated on a test set using comparison metrics such 

as accuracy, precision, recall, or F1 score. These metrics provide a quantitative measure of how 

well each model performs on the same task, and by using the same test set and comparison 

metrics, we can compare the models in a fair and consistent manner. 

5   Result 

Our experimental results demonstrate that the proposed Instant parameter update approach can lead to 

improved performance of neural networks on benchmark datasets.  

Method Accuracy Precision Recall F1 Score 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 96.91% 0.9624 0.9626 0.9687 𝐷𝑖𝑟𝑒𝑐𝑡𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 94.95% 0.9492 0.9412 0.9432 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑 97.84% 0.9885 0.9883 0.9893 

 𝑇𝑎𝑏𝑙𝑒1 shows the experimental results obtained from the MNIST dataset 

The table shows the performance of three different methods for a given task, based on various 

comparison metrics. The task involves some form of classification or prediction, and the methods are 

compared based on their accuracy, precision, recall, and F1 score. 
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The results show that the proposed method achieves the highest accuracy of 97.84%, with the 

standard backpropagation method coming in second with an accuracy of 96.91%. The direct feedback 

alignment method achieves the lowest accuracy of 94.95%. 

In terms of precision and recall, the proposed method outperforms the other two methods by a 

significant margin, achieving precision and recall scores of 0.9885 and 0.9883, respectively. The 

standard backpropagation method also performs relatively well in terms of precision and recall, with 

scores of 0.9624 and 0.9626, respectively. However, the direct feedback alignment method has a 

noticeably lower precision score of 0.9492 and a lower recall score of 0.9412. 

Overall, the results suggest that the proposed method is the best option for this particular task, based 

on the high accuracy, precision, recall, and F1 score. The standard backpropagation method also 

performs relatively well, but the direct feedback alignment method lags behind in all metrics. 

 

Figure 7: Metrics Comparison with dataset 

 

Method Accuracy Precision Recall F1 Score 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 95.22% 0.9483 0.9522 0.9469 𝐷𝑖𝑟𝑒𝑐𝑡𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 94.22% 0.9385 0.9422 0.9367 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑 96.58% 0.9609 0.9658 0.9595 

 𝑇𝑎𝑏𝑙𝑒2 showing the experimental results on CIFAR-10 dataset 

The table shows the performance of three different methods for a given task, based on various 

comparison metrics. The task involves some form of classification or prediction, and the methods are 

compared based on their accuracy, precision, recall, and F1 score. 
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The results indicate that all three methods achieve relatively high levels of accuracy, with the 

proposed method achieving the highest accuracy of 96.58%. The precision and recall scores also 

show that all three methods perform well, with the proposed method achieving the highest precision 

and recall scores of 0.9609 and 0.9658, respectively. 

The standard backpropagation method achieves a slightly lower precision score of 0.9483, but its 

recall score of 0.9522 is similar to the other two methods. The direct feedback alignment method 

achieves the lowest precision score of 0.9385, but its recall score of 0.9422 is still relatively high. 

Overall, the results suggest that the proposed method may be the best option for this particular task, 

based on the highest accuracy, precision, recall, and F1 score. However, the differences in 

performance between the three methods are relatively small, so further evaluation may be necessary 

to determine the best option for different scenarios or datasets. 

 

Figure 8: Loss and Epoch Comparison 

6   Conclusion 

In this paper, we proposed a novel approach for neural network training that updates the trainable 

parameters at each hidden layer by calculating the error at that layer. Our experimental results 

demonstrate that this approach can lead to improved performance of neural networks on benchmark 

datasets, outperforming traditional backpropagation and existing algorithms. 

Future work can explore the application of this approach to more complex architectures and tasks, 

such as natural language processing and image recognition. Additionally, the performance of our 

approach can be compared with other gradient-based optimization methods, such as second-order 

methods and stochastic gradient descent with momentum. Overall, the proposed approach has the 

potential to improve the training of neural networks and advance the field of deep learning. 
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